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Heteroclinic behavior in rotating Rayleigh-Bénard convection
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Abstract. We investigate numerically the appearance of heteroclinic behavior in a three-dimensional,
buoyancy-driven fluid layer with stress-free top and bottom boundaries, a square horizontal periodicity
with a small aspect ratio, and rotation at low to moderate rates about a vertical axis. The Prandtl num-
ber is 6.8. If the rotation is not too slow, the skewed-varicose instability leads from stationary rolls to a
stationary mixed-mode solution, which in turn loses stability to a heteroclinic cycle formed by unstable
roll states and connections between them. The unstable eigenvectors of these roll states are also of the
skewed-varicose or mixed-mode type and in some parameter regions skewed-varicose like shearing oscil-
lations as well as square patterns are involved in the cycle. Always present weak noise leads to irregular
horizontal translations of the convection pattern and makes the dynamics chaotic, which is verified by
calculating Lyapunov exponents. In the nonrotating case, the primary rolls lose, depending on the aspect
ratio, stability to traveling waves or a stationary square pattern. We also study the symmetries of the
solutions at the intermittent fixed points in the heteroclinic cycle.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory) – 47.20.Bp Buoyancy-driven instability –
47.32.-y Rotational flow and vorticity – 47.54.+r Pattern selection; pattern formation

1 introduction

Rayleigh-Bénard convection in a plane fluid layer heated
from below and rotating about a vertical axis has been an
object of special interest due to its geophysical and astro-
physical applications, its realizability in laboratory exper-
iments, and since it allows a theoretical study of pattern
formation and the transition to turbulence. For a plane
fluid layer of infinite horizontal extent, with stress-free
top and bottom boundaries, as well with infinite Prandtl
number, Küppers and Lortz [1] found two-dimensional,
stationary convection rolls to be unstable if the Taylor
number, measuring the rotation rate, exceeds the critical
value Tc = 2 285. This result was obtained by using a
small-amplitude expansion near the onset of convection.
The instability, known as the Küppers-Lortz instability,
appears in the form of rolls rotated by about 58o with re-
spect to the original rolls, and the new, rotated rolls are
in turn unstable to rolls rotated relative to them.

Küppers [2], Clever and Busse [3], and Clune and
Knobloch [4] extended the analysis to the case of rigid
boundaries and finite Prandtl number, where the insta-
bility also occurs. It was found that the critical Taylor
number above which no stable two-dimensional rolls ex-
ist decreases with decreasing Prandtl number. For Taylor
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numbers below the critical one the situation is compli-
cated by the fact that the instability mechanisms for rolls
in a nonrotating system (see, e.g., Busse and Clever [5]
or Busse [6]) continue to operate and compete with the
Küppers-Lortz mechanism. In particular, the Küppers-
Lortz instability is closely related to the skewed-varicose
instability, and the two instabilities cannot always be dis-
tinguished. For fixed values of the Prandtl number and the
Taylor number, there exist stability regions for rolls in the
plane of the (basic) wave number (measuring the diame-
ter of the rolls) and the Rayleigh number [3]. Roughly, the
rolls exist in finite Rayleigh-number intervals near the on-
set of convection and become skewed-varicose or Küppers-
Lortz unstable if the Rayleigh number exceeds threshold
values depending on wave number, Prandtl number and
Taylor number. The angle χ between the most unstable
Küppers-Lortz perturbation and the unperturbed rolls is
also parameter-dependent, but for high rotation rates and
large Prandtl numbers the values of χ lie in the neighbor-
hood of 58o, the angle found by Küppers and Lortz [1] for
the case of free-slip boundary conditions. For these latter
conditions there exists still another, small-angle instabil-
ity which, unlike the familiar Küppers-Lortz instability,
disappears at infinite Prandtl number and does not occur
for no-slip boundary conditions (see Ref. [4] and the recent
study by Ponty, Passot, and Sulem [7]).

When stationary rolls have become unstable through
the Küppers-Lortz instability, the convection is inevitably
time-dependent. Busse, Clever, and Heikes [8,9] modeled
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the resulting dynamical behavior by a system of three or-
dinary differential equations describing the interaction be-
tween just three relevant Fourier modes. These modes cor-
respond to rolls which are transformed into each other by
60o rotations. The three roll states are cyclically visited by
the system. This was found numerically [8,9], but the exis-
tence and stability (time-asymptotic as well as structural)
of a heteroclinic cycle for the three-dimensional model
has also been proved mathematically [10–12]. Goldstein,
Knobloch, and Silber [13] used equivariant (symmetric)
bifurcation theory to study the onset of convection for
the case of horizontal periodicity on a hexagonal lattice.
Assuming the unstable disturbances to be nonoscillatory
(oscillatory onset of convection is only possible for Prandtl
numbers less than 0.677 [14], this upper bound applying to
free-slip as well as no-slip boundary conditions [4]), they
derived a system of three characteristic ordinary differen-
tial equations, valid close to the onset of convection and
containing the model system of Busse, Clever, and Heikes
[8,9] as a truncated version. It was found that for appro-
priate values of the system parameters, as the essence of
the Küppers-Lortz instability, heteroclinic orbits connect-
ing roll solutions appear.

Heteroclinic behavior was also observed in theoreti-
cal studies of nonrotating convection. As found by Busse
and Bolton [15,16], in the case of stress-free top and bot-
tom boundaries stable convection rolls cannot exist for
Prandtl numbers less than about 0.5 and convection rolls
with the critical wave number (for the onset of convection)
are always unstable. Like rotation, this provides possibili-
ties for a direct transition from the quiescent basic state to
complicated spatiotemporal behavior. Heteroclinic behav-
ior in nonrotating convection at low Prandtl numbers and
between stress-free top and bottom boundaries was ob-
served in numerical bifurcation studies by Busse, Kropp,
and Zaks [17] and Matthews et al. [18]. These authors
used aspect (i.e., width to depth) ratios of 8 (Ref. [17])
and 1, respectively, and obtained parts of their results by
studying low-order systems of model equations.

Heteroclinic orbits give rise to a nonstationary, inter-
mittent dynamics similar to what is observed in many ex-
periments. If the attracting state is a stable heteroclinic
cycle, on the other hand, the intermittent behavior disap-
pears as time evolves since the system comes closer and
closer to the unstable fixed points and spends more and
more time in their vicinity. For this reason Busse, Clever,
and Heikes [8,9] introduced noise into their model, nu-
merically realized by lower bounds for the moduli of the
three dynamical variables. If these lower bounds fluctuate
randomly, the temporal behavior is expected to be statis-
tically periodic and at the same time irregular.

In recent years both experimental [19–21] and numeri-
cal [22] studies of rotating convection have predominantly
been concentrated on systems with large aspect ratios (as-
pect ratios larger than about 10). Spatially extended con-
vective systems appear particularly suitable for the study
of structure formation and (the transition to) spatiotem-
poral chaos [23–25]. While in reference [22] the original hy-
drodynamic equations (in the Boussinesq approximation)

are solved, other theoretical investigations of the subject
use model equations, notably of the Swift-Hohenberg type
[26–29]. Recent numerical studies of rapidly rotating tur-
bulent convection in a plane periodic geometry with small
aspect ratio are due to Julien et al. [30,31].

The numerical studies of convective systems on the
base of the original hydrodynamic equations use mainly
simulations of the equations, forward in time and starting
from selected or random initial conditions. By providing
information on the time-asymptotic states for given values
of the system parameters, simulations are a valuable tool
to determine the bifurcation structure of the systems stud-
ied. In general, systems with small aspect ratios are more
accessible to bifurcation analyses than such with large as-
pect ratios. One obvious reason is that the required high
number of grid or collocation points limits the numerical
analysis of large systems. Due to restricted computer ca-
pacities, specific numerical methods of bifurcation analy-
sis [32] are presently, if at all, only applicable to small-
aspect-ratio systems. Furthermore, the experimental
observations indicate qualitative differences between
small-scale and large-scale systems in that for the latter
ones the transition to time dependence, complexity and
chaos does not seem to be characterized by a sequence of
well separable and mainly supercritical bifurcations and is
thus difficult to analyze. But also for the seemingly sim-
pler small-scale systems the transition to time dependence
and chaos is still imperfectly understood.

There exist important applications where the aspect
ratio is small or moderate. The fluid outer core of the
Earth is a spherical shell whose thickness is approximately
equal to the mean value of the inner and outer radii, giving
an “azimuthal aspect ratio” of about three and an “axial
aspect ratio” of about one (needless to say, the spherical-
shell topology is important here; plane geometry with pe-
riodic horizontal boundary conditions as assumed in many
theoretical studies reflects at least the azimuthal periodic-
ity of the spherical geometry). The corresponding aspect
ratios for the convection zone of the Sun (also a spherical
shell) are 9 and 2, respectively. Also a number of methods
for semiconductor crystal growth from a crystal melt, in
particular those where the melt is situated in a (rotating)
vertical heated crucible, correspond to convection with a
small aspect ratio and allow at least important aspects to
be modeled by Rayleigh-Bénard configurations with heat-
ing from below and cooling from above [33].

Recent laboratory experiments on rotating convection
with water in containers with aspect ratio≈ 1 are reported
in references [34,35] for a circular convection cell and in
reference [36] for a rectangular convection cell. A partic-
ular property of rotating convection in small-aspect-ratio
circular containers is a lowering of the critical Rayleigh
number for the convection onset compared to the predic-
tions for a laterally infinite system [14]. This is caused
by special non-axisymmetric modes which are spatially
localized near the lateral boundary and which show an
azimuthal pattern drift. References [37,38] describe ex-
periments with water in circular containers, with radius
to depth ratio 2.5 and 5, respectively, and concentrate
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particularly on the observation of these sidewall travel-
ing waves and their description by the complex Ginzburg-
Landau equation. Using the basic hydrodynamic equa-
tions, Goldstein et al. [39] have numerically solved the
linear stability problem for the onset of convection in the
rotating cylinder. They found that there is a competition
between sidewall modes and bulk or body modes and that
sidewall modes set in first if the aspect ratio is sufficiently
small. A remarkable experimental observation was made
by Bajaj et al. [40]: For water in a circular container with
radius to depth ratio Γ = 4.8 as well for argon in a con-
tainer with Γ = 8.3, and for rotation rates where Küppers-
Lortz dynamics is theoretically expected, they found
square patterns near the onset of convection (by onset
the appearance of bulk modes is meant here; in addition
the wall mode can be present along the cell periphery).
Other experiments on rotating convection, including early
work, are discussed in the monograph of Koschmieder [41],
who stresses the role of centrifugal effects.

In this paper we consider a rotating system with small
aspect ratio and concentrate on the appearance and prop-
erties of heteroclinic behavior for small to moderate ro-
tation rates. We use periodic boundary conditions in the
horizontal directions. Clearly, special sidewall effects, like
the wall modes in circular geometry, are filtered out by
these boundary conditions. The influence of walls at a fi-
nite distance appears through the finite aspect ratio. A
general study would require a variation of the aspect ra-
tio, in addition to and independent of variations of the
Rayleigh, Taylor, and Prandtl numbers. This is an unre-
alistic undertaking for a single numerical study. Therefore
the aspect ratio is kept fixed at a value of 2

√
2 in most

of the calculations and at values of 4, 4.5, or 4
√

2 in a
few additional calculations. The Prandtl number is 6.8.
By these parameter choices the present study continues
recent investigations of two-dimensional [42] and three-
dimensional [43] nonrotating convection with the same
parameters. In rotating convection the horizontal length
scale decreases with increasing rotation rate, which cor-
responds to an increase of the effective aspect ratio. By
varying the rotation rate we thus scan, to a certain degree,
also the aspect ratio. This method to vary the effective as-
pect ratio has been exploited in experiments [36,37]. At
the top and bottom stress-free boundary conditions are
used, which are appropriate for many geophysical and as-
trophysical applications and are computationally simpler
than no-slip conditions. The system is supposed to rotate
about the vertical z axis. This can be viewed as looking
at the polar region of a star or planet. As in all of the
above mentioned theoretical studies of rotating convec-
tion, it is assumed that the centrifugal force is negligible
in comparison with gravity, so that the effects of rotation
appear through the Coriolis force only. For our small as-
pect ratios and relatively low rotation rates the neglect of
the centrifugal force is unproblematic. As to the applica-
bility of our results to systems with large aspect ratios it
should be noted that the physical mechanisms observed in
small-scale systems can act locally in large-scale systems
too.

After introducing the governing equations in Section 2,
we describe two-dimensional convection rolls and their
symmetries under the influence of rotation in Section 3.
The appearance and properties of heteroclinic behavior
are studied in Sections 4 and 5. In Section 6 a discussion
of our results is given.

2 Equations

We consider buoyancy-driven rotating convection in a
plane fluid layer of thickness d heated from below. Us-
ing the Oberbeck-Boussinesq approximation, the govern-
ing system of partial differential equations reads as follows:

∂v
∂t

+ (v · ∇)v = −∇p+ P 4v + PR θez

+P
√
T v× e (1)

∇ · v = 0 (2)
∂θ

∂t
+ v · ∇θ = vz +4θ . (3)

Here v is the fluid velocity and p and θ represent the de-
viations of pressure and temperature from their values in
the pure conduction state. We use Cartesian coordinates
x, y and z with the z axis in the vertical direction parallel
to the gravitational force. ez is the unit vector in the ver-
tical direction whereas the vector e is the general notation
for the unit vector in the direction of the rotation axis. For
our special choice e = ez one has v × e = (vy,−vx, 0) in
equation (1). Equations (1–3) are given in dimensionless
form where the units of length and time are d and d2/κ,
respectively, with κ being the thermal diffusivity. θ is mea-
sured in units of the temperature difference δT between
the lower and upper boundaries of the fluid layer. There
are three dimensionless parameters, the Prandtl number
P , the Rayleigh number R, and the Taylor number T ,
defined by

P =
ν

κ
, R =

αgd3

νκ
δT, T =

(
2Ωd2

ν

)2

, (4)

where ν is the kinematic viscosity, α the volumetric ex-
pansion coefficient, Ω the angular velocity of the rotation
and g the gravitational acceleration. The Rayleigh number
R measures the strength of the buoyancy forces.

We apply periodic boundary conditions with spatial
period L in the horizontal directions x and y. The top and
bottom planes are assumed to be impenetrable, stress-free
and isothermal:

∂vx
∂z

=
∂vy
∂z

= vz = θ = 0 at z = 0, 1. (5)

For the choice of boundary conditions the following
Fourier expansions are appropriate:

vx =
∞∑

kx,ky=−∞

∞∑
kz=0

ṽx(k)eikxx+ikyy cos kzz (6)
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vy =
∞∑

kx,ky=−∞

∞∑
kz=0

ṽy(k)eikxx+ikyy cos kzz (7)

vz =
∞∑

kx,ky=−∞

∞∑
kz=0

ṽz(k)eikxx+ikyy sin kzz (8)

θ =
∞∑

kx,ky=−∞

∞∑
kz=0

θ̃(k)eikxx+ikyy sinkzz (9)

p =
∞∑

kx,ky=−∞

∞∑
kz=0

p̃(k)eikxx+ikyy cos kzz. (10)

The wave numbers k = (kx, ky, kz) are connected with the
integer mode numbers n = (nx, ny, nz) by

kx = nx
2π
L
, nx = 0,∓1,∓2, . . . (11)

ky = ny
2π
L
, ny = 0,∓1,∓2, . . . (12)

kz = nzπ, nz = 0, 1, 2, 3, . . . (13)

With the abbreviations

w = (v · ∇)v , φ = v · ∇θ (14)

for the nonlinearities, which have Fourier expansions like
v and θ, we arrive at the analogues of equations (1–3) in
Fourier space:

0 = ikxṽx + iky ṽy + kz ṽz (15)
˙̃vx = −ikxp̃− w̃x −P k2ṽx + P

√
T ṽy (16)

˙̃vy = −ikyp̃− w̃y −P k2ṽy −P
√
T ṽx (17)

˙̃vz = kzp̃− w̃z −P k2ṽz + PR θ̃ (18)
˙̃
θ = ṽz − φ̃− k2θ̃. (19)

Due to the constraint (2) not all of these equations are
independent of each other. By taking the divergence of
equation (1) one eliminates the pressure p, namely,

p̃ = i
kx
k2

(
w̃x −P

√
T ṽy

)
+ i

ky
k2

(
w̃y + P

√
T ṽx

)
+
kz
k2

(
w̃z −PR θ̃

)
. (20)

Equations (16, 17) can now be written as

˙̃vx =
(
k2
x

k2
− 1
)(

w̃x −P
√
T ṽy

)
−Pk2ṽx (21)

+
kxky
k2

(
w̃y + P

√
T ṽx

)
+ i

kxkz
k2

(
PRθ̃ − w̃z

)
˙̃vy =

(
k2
y

k2
− 1

)(
w̃y + P

√
T ṽx

)
−Pk2ṽy (22)

+
kxky
k2

(
w̃x −P

√
T ṽy

)
+ i

kykz
k2

(
PRθ̃ − w̃z

)
.

As in [43] we restrict ourselves to the case of a vanishing
mean horizontal flow since such flows can be removed by
a Galilean transformation. Therefore we set ṽx(0, 0, 0) =
ṽy(0, 0, 0) = 0.

Fig. 1. Convection rolls at R = 10 000 without rotation.

3 Two-dimensional stable rolls
under the influence of rotation

In our numerics we used a pseudospectral method
[44,45] with in general 16 collocation points in each spatial
direction; to test for truncation (or finite-resolution) ef-
fects, additional calculations were made with a resolution
of 32 collocation points in each of the horizontal direc-
tions (and 16 points in the vertical direction). Time inte-
gration was performed using an eighth-order Runge-Kutta
scheme as described in [46]. Starting from a nonrotating
stationary state with two-dimensional straight convection
rolls [43], depicted in Figure 1, we performed calculations
with increasing Taylor number T . As is well-known, the
convection rolls remain stable as long as the rotation is
sufficiently slow.

The periodic horizontal boundary conditions restrict
the possible angles α between the rolls and (say) the y
axis under which parallel rolls can be put in a periodic
box. For a general rectangular periodicity box one finds

2nD/ cosα = Lx,

2mD/ sinα = Ly, (23)

where Lx and Ly are the side lengths of the box, D is
the roll diameter, and m and n are integer numbers. The
periodic boundary conditions require that even numbers
of rolls cross the sides of the rectangle. Relations (23) give
the necessary and sufficient condition

mLx cosα = nLy sinα. (24)

In our special case of a quadratic box this condition takes
the form

m cosα = n sinα (25)

and the roll diameter is

D =
L

2n
cosα =

L

2m
sinα. (26)
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The choice m = n = 1, for instance, implies α = 45o or
α = 225o, respectively. The roll states observed are invari-
ant with respect to rotations by 180o about the vertical
(see below); thus α = 45o and α = 225o correspond to the
same state. For m = 1 and n = −1 one finds α = −45o,
m = 1 and n = 2 give α = 26.6o, and so on. In Fourier
space the states with nonrotated or rotated straight rolls
are easily detected since only modes with horizontal wave
vectors (kx, ky) perpendicular to the roll axis are excited.
So for rolls rotated by 45o with respect to the original ori-
entation parallel to the y axis only modes with kx = ky
and for rolls rotated by −45o only modes with kx = −ky
are present.

For not too high Rayleigh numbers, the convection for
T = 0 (no rotation) is purely two-dimensional and time-
independent, in the form of rolls parallel to the y axis
(parallel to one of the sides of the square box). In [43]
we found the formal structure of the symmetry group G
under which the steady-state solution is invariant to be
[D2]x,z × O(2)y × SO(2)t. Under the influence of (slow)
rotation the rolls are still present, still parallel to one of
the sides of the square, and still stationary. Unlike in the
nonrotational case, also the velocity component vy has
non-zero values; under the influence of the Coriolis force
the velocity streamlines are no longer perpendicular to
the roll axis. The Fourier modes of all field components
are still y-independent, i.e., all modes with mode numbers
(i, j, k) , j 6= 0 vanish.

Inspection of the Fourier coefficients of the state of a
slowly rotating system shows that the following symmetry
relations still hold:

ṽx(i, j, k) = ṽy(i, j, k) = ṽz(i, j, k) = θ̃(i, j, k) = 0
i+ k odd . (27)

It has been noted in [43] that the corresponding symme-
try operation T

L/2
ud (called S2 in Ref. [43]) is an up-down

reflection (a reflection in the x-y plane or horizontal mid-
plane) combined with a translation of the pattern in the
x direction by L/2:

T
L/2
ud : (x, y, z) 7→ (x+

L

2
, y, 1− z)

(vx, vy, vz, θ) 7→ (vx, vy,−vz,−θ). (28)

Furthermore one finds that (provided x = 0 is just the
midplane between two neighboring, counterrotating rolls)

ṽx(i, j, k) = −ṽx(−i,−j, k)
ṽy(i, j, k) = −ṽy(−i,−j, k)
ṽz(i, j, k) = ṽz(−i,−j, k)

θ̃(i, j, k) = θ̃(−i,−j, k), (29)

which corresponds to symmetry with respect to rotations
T180 by 180o about the vertical (called S6 in Ref. [43]):

T180 : (x, y, z) 7→ (−x,−y, z)
(vx, vy, vz , θ) 7→ (−vx,−vy, vz, θ). (30)

Fig. 2. One of the intermittent fixed points at R = 10 000
and T = 400.

The transformations TL/2ud and T180 generate the discrete
group Gd = {TL/2ud , T180, T

L/2
ud T180, id}. Gd has the group

structure D2, that is, it is commutative, each element is
inverse to itself, and the product of two different nontrivial
elements (i.e., elements that are different from the identi-
cal transformation id) gives the third nontrivial element.
Together with the translational invariance and the period-
icity in the y direction (along the roll axis), which corre-
spond to a circular symmetry SO(2), the formal struc-
ture of the symmetry group of the roll states is then
[D2]x,y,z×SO(2)y×SO(2)t. Compared to the nonrotating
case one reflection symmetry is lost. This results from the
fact that the Coriolis force breaks reflection symmetry in
vertical planes.

4 Transition to heteroclinic behavior for fixed
Rayleigh number

ForR fixed at a value of 10 000, our numerical calculations
show a transition from stationary roll convection to hete-
roclinic behavior at a Taylor number of T = 360. Typical
three-dimensional surface plots of the modulus of the ve-
locity field are shown in Figures 2 and 3. The temporal
evolution of the absolute values of the modes ṽx(−1, 1, 1)
and ṽx(1, 1, 1) is depicted in Figure 4. The intermittent,
unstable fixed points correspond to rolls rotated by either
−45o or +45o with respect to the original rolls parallel
to the y axis. So it is seen in Figure 4 that always either
the mode (−1, 1, 1) (which corresponds to rolls rotated by
−45o) or the mode (1, 1, 1) (which corresponds to rolls
rotated by +45o) is excited.

The unstable, rotated rolls are still straight and still
invariant under the symmetry group of the stable rolls (de-
scribed in Sect. 3). This is easily checked by means of the
conditions (27, 29) (in the case of condition (29) one has to
ensure that the planes x = −y or x = y, respectively, are
midplanes between neighboring, counterrotating rolls).

The temporal behavior shown in Figure 4 was ob-
tained after a long simulation. The time the system spends
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Fig. 3. Another intermittent fixed point at R = 10 000 and
T = 400.

Fig. 4. Time evolution of the absolute values of the modes
ṽx(−1, 1, 1) and ṽx(1, 1, 1) at R = 10 000 and T = 400. The
integration time is measured in units of the thermal diffusion
time.

at an unstable fixed point does apparently not vary. But
during the relaxation towards the state shown a mono-
tonic prolongation of this waiting time could be observed.
Such a prolongation is indicative of a stable (attracting)
heteroclinic cycle. The fact that the cycle length does not
tend to infinity is very probably due to finite numerical
precision (this effect of the numerics is, e.g., discussed in
Ref. [47], Sect. 6.3). One should also note that the cycle
length is indeed very large, of the order of 104 thermal
diffusion times.

For T = 400 (and R = 10 000) we have calculated the
eigenvalues and eigenvectors of the oblique, intermittent
rolls. For each of the two states there are two equal, real
positive eigenvalues (= 15.9); one eigenvalue vanishes (cor-
responding to the neutral stability with respect to transla-
tions perpendicular to the roll axis); all other eigenvalues
have negative real parts. One of the unstable eigenvectors
is shown in Figure 5; the other one differs from it merely
in that it is translated in the direction of the unperturbed
rolls. The largest component of the unstable eigenvectors
is either the mode (0,∓1, 1) (as in the example shown in

Fig. 5. Unstable eigenvector to one of the intermittent fixed
points, calculated for R = 10 000 and T = 400. Isolines of the
vertical velocity component vz in the horizontal midplane are
shown. Solid (dashed) lines refer to positive (negative) values.

Fig. 5, corresponding to rolls parallel to the y axis) or (for
the other oblique-roll state) (∓1, 0, 1), followed by shear
components independent of z (e.g. vx(0,∓1, 0) in the ex-
ample shown in Fig. 5) as well as components with higher
mode numbers. The unstable eigenvectors show the same
tilt of structures as do the respective unperturbed states;
the eigenvector shown in Figure 5, for instance, belongs to
the roll solution with rolls rotated clockwise by 45o with
respect to the y axis. If a certain percentage disturbance
(unstable eigenvector) is superposed to the unperturbed
rolls, the resulting structure looks similar to that shown in
Figure 11 and is strongly suggestive of the skewed-varicose
instability [5].

The overall behavior observed is similar to that in the
Busse-Clever-Heikes [8,9] model for Küppers-Lortz unsta-
ble rolls. The numerics brings in a lower bound to the
distance between the phase-space trajectory and the sad-
dle points. It thus acts as experimental noise would do.
With one difference, however: Real noise will in general
produce a distribution of recurrence times with some tail
characteristic (see Ref. [47], Sect. 8.2). The mean noise
level (in conjunction with the properties of the unper-
turbed heteroclinic cycle) introduces a characteristic time
scale, the mean recurrence time, also present in our nu-
merical model. What is missing in the numerical model
is a detectable variation of the cycle length, seemingly as
a consequence of the special character of the “numerical
noise” at the resolution boundary.

But there is yet another, striking effect: In Figure 6 the
temporal evolution of the real parts of the modes (−1, 1, 1)
and (1, 1, 1) is shown. There are considerable amplitude
variations, including occasional sign changes. In view of
the practically constant amplitudes in Figure 4 (where the
moduli of the modes are shown), these variations must be
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Fig. 6. Time evolution of the real parts of the modes
ṽx(−1, 1, 1) and ṽx(1, 1, 1) at R = 10 000 and T = 400. The
integration time is measured in units of the thermal diffusion
time.

due to phase shifts of the modes, which correspond to
horizontal translations of the roll patterns perpendicular
to the roll axis.

The time dependence seen in Figure 6 appears irregu-
lar. To test for chaos, we have calculated Lyapunov expo-
nents, using an algorithm of Shimada and Nagashima [48].
Figure 7 shows the cumulative values of the 5 largest expo-
nents over the integration time along a system trajectory.
As is clearly seen, there are positive exponents. Thus the
calculated dynamics is chaotic.

According to the above discussion this chaotic behav-
ior requires the presence of noise and would not be ob-
served if the numerical calculations were infinitely precise
(since the waiting time at the fixed points would tend to
infinity). If roll states transformable into each other by
horizontal translations are considered as equivalent, then
the attracting state is, seemingly, a heteroclinic cycle, or
in other words, the heteroclinic cycle is stable modulo hor-
izontal translations. It is important to note, however, that
the irregular or chaotic behavior will survive in the limit
of vanishing noise or infinite numerical precision. Namely,
if a given roll pattern is unstable to a certain perturba-
tion (say, a rotated roll pattern), then, due to the transla-
tional symmetry of the original rolls (along the roll axis),
these are equally unstable to all perturbations obtained
from the first one by horizontal translation. Thus irregu-
lar phase shifts or horizontal translations are unavoidable,
however small the numerical or experimental noise. This
is another mechanism to generate irregularity, in addition
to an irregular variation of the cycle length as suggested
by Busse, Clever, and Heikes [8,9].

In addition to the calculations for R = 10 000 de-
scribed up to now, we have, for the same aspect ratio
L = 2

√
2, similarly traced the (time-asymptotic) solutions

for R = 5 000 and R = 2 000, again starting from the non-
rotating case. For R = 5 000 the scenario is the same as
that for R = 10 000, with onset of heteroclinic behavior
now at T = 290. ForR = 2 000 a secondary stable station-
ary roll solution with rolls lying under −45o or +45o in the
box is found between the original rolls and the heteroclinic

Fig. 7. The 5 largest Lyapunov exponents versus integration
time for R = 10 000 and T = 400. The integration time is
measured in units of the thermal diffusion time.

behavior. These secondary rolls occur at T = 250 and are
replaced by heteroclinic behavior at T = 350 . . .400.

Furthermore, in order to test for the influence of the as-
pect ratio, calculations with the larger aspect ratio L = 4
and R = 2 500 were made. Without rotation one has then
rolls which lie under ±45o in the box and whose wave-
length is no longer the largest possible one. At T = 50
a transition to a secondary stationary solution of the
skewed-varicose type (cf. Sect. 5 and Fig. 11) is observed.
At T = 150 a Hopf bifurcation leads to a limit cycle show-
ing shearing oscillations of the skewed-varicose pattern.
Heteroclinic behavior is observed for T & 200. The larger
aspect ratio seems to be favorable for an early transition.
This is obviously due to the role played by the skewed-
varicose instability (see discussion in Sect. 5).

The transition to heteroclinic behavior for fixed
Rayleigh number is hysteretic: For R = 10 000, where
for increasing Taylor number the transition takes place
at T = 360, following the path backwards to lower Tay-
lor numbers heteroclinic behavior is observed down to
T . 250.

5 Variation of Rayleigh number for fixed
Taylor number

We now describe results obtained by varying (increasing)
the Rayleigh number for fixed Taylor number:

(i) For T = 100, T = 150, T = 175, T = 200 the
primary bifurcation leads to rolls parallel to the y axis.
These lose stability to time-periodic states at R = 24 000,
R = 26 000, R = 21 000, R = 18 000. Without rotation a
bifurcation from stationary rolls to traveling waves occurs
atR = 17 950 [43]. These traveling waves are of the zigzag
(as opposed to the varicose) type. The time-periodic states
for T = 100 and T = 150 are also traveling waves of
the zigzag type. Then, for T = 175 there is a transition
from the stationary rolls to an oscillatory state which is
invariant along the roll axis, similar to oscillations found
in two-dimensional convection [42]. For T = 200, finally,
traveling waves of the varicose type are observed.
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Fig. 8. Isolines of the vertical velocity component vz in the
horizontal midplane forR = 1 100 and T = 250. Solid (dashed)
lines refer to positive (negative) values. Each horizontal peri-
odicity box (0, L) × (0, L) contains four squares.

Fig. 9. Time evolution of the real part of the mode ṽx(−1, 1, 1)
for R = 2 750 and T = 250. The integration time is measured
in units of the thermal diffusion time.

(ii) For T = 225 the primary bifurcation (at R =
1 000) leads to stationary squares (cf. Fig. 8), which (at
R = 1 100) lose stability to stationary rolls lying under
+45o or −45o in the periodicity box. At R ≈ 2 200 there is
then a bifurcation to a stationary mixed-mode or skewed-
varicose-type solution as shown (though for T = 300)
in Figure 11, followed, at R ≈ 2 500, by a transition to
heteroclinic behavior. At the significantly higher Rayleigh
number of R = 11 000 again traveling waves along rolls
parallel to a coordinate axis are found.

(iii) For T = 250 the primary bifurcation (at R =
1 100) still leads to stationary squares (Fig. 8), which (at
R = 1 300) lose stability to stationary rolls lying under
+45o or −45o in the periodicity box. At R ≈ 2 300 there is
then a bifurcation to a stationary mixed-mode or skewed-
varicose-type solution as shown in Figure 11, followed, at

Fig. 10. Isolines of the vertical velocity component vz in the
horizontal midplane for R = 2 750 and T = 250 (snapshot).
Solid (dashed) lines refer to positive (negative) values.

Fig. 11. Isolines of the vertical velocity component vz in the
horizontal midplane for the steady state found at R = 2 400
and T = 300. Solid (dashed) lines refer to positive (negative)
values.

R = 2 700, by a transition to a heteroclinic behavior show-
ing some interesting details: Again the system switches be-
tween −45o and +45o rolls. But the time intervals during
which these rolls are visible in pure form are very short
compared to oscillatory “transition” phases, as is seen in
Figure 9 where the temporal evolution of <ṽx(−1, 1, 1) is
depicted. The oscillations consist of skewed-varicose like
deformations of roll-like structures (see Fig. 10). Besides
the pure roll pattern (with rolls under +45o or −45o), also
a pure square pattern becomes visible during certain short
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time intervals. AtR ≈ 3 000 this behavior is then replaced
by the “normal” heteroclinic behavior as seen in Figure 4.

(iv) For T = 300 the primary bifurcation (at R =
1 100 . . .1 200) leads to stationary rolls lying under +45o

or −45o in the periodicity box. A stationary solution of
the mixed-mode (skewed-varicose) type appears at R =
2 400 (see Fig. 11) and heteroclinic behavior is found for
R = 2 800.

(v) For T = 2 500 and T = 3 000 (above the critical
value for the Küppers-Lortz instability) there is a direct
transition from the quiescent ground state to heteroclinic
behavior involving four roll states, with rolls rotated by
+26.6o or −26.6o with respect to the x axis or the y axis
(that is, modes with ky = ∓2kx or kx = ∓2ky are excited).

The transition between rolls and squares near the onset
of convection is hysteretic: For T = 150, where the pri-
mary bifurcation (at R = 950) leads to rolls, simulations
starting from finite-amplitude squares lead to stationary
squares (as shown in Fig. 8). At R = 1 000 these squares
lose stability to stationary rolls lying under +45o or −45o

in the periodicity box.
Obviously the skewed-varicose instability of rolls [5]

is important for the observed heteroclinic behavior. This
instability accomplishes a change to larger horizontal
wavelengths. It is suppressed if the rolls have the largest
possible diameter in a given periodicity box, namely, if
there is just one pair of rolls parallel to one of the coor-
dinate axes. Therefore heteroclinic behavior is only found
with rolls lying obliquely in the box and having diameters
smaller than the maximum one. Increasing the rotation
rate decreases the critical horizontal wavelength for the
onset of convection (so rolls parallel to a coordinate axis
are replaced by rolls lying under ∓45o in box). This corre-
sponds to an increase of the effective aspect ratio. In this
way the skewed-varicose mechanism can come into play as
a result of an increased rotation rate.

One then wonders whether the onset of heteroclinic
behavior is solely due to the increase of the effective as-
pect ratio with increasing rotation rate. If so, the behavior
should also be found in the nonrotating case, provided the
aspect ratio is appropriately chosen (sufficiently large). To
test this we have traced the nonrotating primary convec-
tion rolls towards higher Rayleigh numbers for aspect ra-
tios L of 4, 4.5, and 4

√
2. With L = 2

√
2 the rolls were

found to become unstable to traveling waves along the roll
axis in [43]. For L = 4 the primary rolls (whose diame-
ter is

√
2, again just the critical diameter for the onset of

convection on an infinite plane) lie under +45o or −45o

in the box and the situation is similar to that for, say,
T = 300 with our standard aspect ratio L = 2

√
2. For

L = 4
√

2 one has two pairs of rolls (with the critical di-
ameter) parallel to one of the sides of the box. In all three
cases (L = 4, L = 4.5, and L = 4

√
2) we found the skewed-

varicose instability to lead from the primary rolls to stable
squares. Figure 12 shows the resulting square pattern for
L = 4; there is just one square per box, i.e., the horizontal
scale has become the largest possible one. The squares are
stable up to at least R = 9 000. For the case of no-slip
boundaries and, as in the present study, symmetry of the

Fig. 12. Isolines of the vertical velocity component vz in the
horizontal midplane for R = 2 000 and T = 0. Solid (dashed)
lines refer to positive (negative) values. The aspect ratio is 4.

physical conditions about the horizontal midplane, stable
stationary squares of the type shown in Figure 12 were
found by Busse and Clever [49]. In summary: Without ro-
tation, the primary rolls lose, depending on the aspect ra-
tio, stability to traveling waves or stationary squares; the
horizontal scale is increased when possible (which leads
to squares). Skewed-varicose like (final) states and hete-
roclinic behavior are not found. From this and the results
for rotating convection with L = 4 described at the end
of Section 4 we conclude that, for our Prandtl number
of 6.8, a finite amount of rotation is needed to produce
heteroclinic behavior.

6 Conclusion

We have studied rotating Rayleigh-Bénard convection in
a plane fluid layer with stress-free top and bottom bound-
aries and horizontal periodicity on a square lattice. The
Prandtl number was fixed to a value of 6.8. The aspect
ratio was 2

√
2 in most of the calculations and was raised

to values of 4, 4.5, and 4
√

2 in special additional calcu-
lations. Starting from a two-dimensional stable roll solu-
tion [43], we included rotation into the problem. The orig-
inal [D2]x,z×O(2)y×SO(2)t symmetry of the roll state is
then broken down to a [D2]x,y,z × SO(2)y × SO(2)t sym-
metry.

Keeping the Rayleigh number fixed at values of 10 000,
5 000, or 2 000, we have, with our standard aspect ra-
tio L = 2

√
2, traced the straight-roll solution towards

higher Taylor numbers. Heteroclinic behavior sets in at
T ≈ 300. An additional calculation with the larger aspect
ratio L = 4 indicated that, obviously due to the role played
by the skewed-varicose instability, large aspect ratios
are favorable for the transition to heteroclinic behavior.
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The heteroclinic dynamics is determined by unstable
straight-roll solutions with rolls rotated by ∓45o with re-
spect to the original rolls parallel to one of the coordinate
axes. The intermittent, unstable, rotated-roll solutions are
still invariant under the symmetry group of the stable (but
rotation-influenced) rolls. Their unstable eigenvectors are
of the skewed-varicose type. With roll states transformable
into each other by horizontal translations considered as
equivalent, the attracting state is apparently a (stable)
heteroclinic cycle. However, any noise leads to irregular
phase shifts or horizontal translations of the rolls, such
that, as the calculation of Lyapunov exponents showed,
the dynamics becomes chaotic. The irregular horizontal
translations of the rolls represent a mechanism to gen-
erate irregularity, in addition to an irregular variation
of the cycle length as suggested by Busse, Clever, and
Heikes [8,9].

We have also studied in detail the transition to hetero-
clinic behavior by varying the Rayleigh number for fixed
Taylor number. The primary bifurcation from the quies-
cent ground state leads either to stationary rolls or to sta-
tionary squares (cf. Refs. [50,51]). If squares are selected,
there is first a secondary bifurcation to stationary rolls
before subsequent bifurcations lead to time-dependent
flow, which agrees with results of Riahi [50] for the case
of infinite Prandtl number. Of prime importance in the
observed bifurcation sequence is the skewed varicose insta-
bility, leading from stationary rolls to a stationary mixed-
mode solution. This in turn becomes globally unstable to a
heteroclinic cycle. There are parameter ranges (with Tay-
lor numbers close to that where at the onset of convection
a transition between rolls and squares takes place) where
the heteroclinic cycle involves extended phases of skewed
varicose like shearing oscillations. Additional calculations
with aspect ratios of 4, 4.5, and 4

√
2 for the nonrotating

case indicated that the heteroclinic behavior is not solely
due to the decrease of the effective aspect ratio with in-
creasing rotation rate, but that finite rotation rates are
needed. This is different for Prandtl numbers less than
one (and, as in the present study, stress-free top and bot-
tom boundaries) [17,18].

A decisive influence of the skewed-varicose instability
on the pattern dynamics in rotating convection at small
Taylor and Rayleigh numbers was observed in the exper-
iments of Hu, Ecke, and Ahlers [21], albeit for a large
aspect ratio, circular geometry, a Prandtl number near
one, and no-slip top and bottom boundaries. The skewed-
varicose instability appears in the form of pairs of de-
fects in a roll pattern. The defects can travel and thereby
cause a pattern rotation. This was observed previously
in numerical simulations of rotating convection at large
Prandtl numbers by Millán-Rodŕıguez et al. [22,27]. The
pattern rotates gradually in the sense of the externally
applied rotation. Discrete large jumps as typical of the
Küppers-Lortz instability and occuring at higher rotation
rates are not observed. Clearly, with periodic boundary
conditions and the roll diameter given, the roll orientation
can only change by discrete steps. More step-like changes
can, for instance, also be expected for rotating convec-

tion in square containers, where roll orientation parallel
to the sides is preferred. Furthermore, the behavior may
vary with variations of the Prandtl number and the aspect
ratio. These points need to be explored in future studies.
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1. G. Küppers, D. Lortz, J. Fluid Mech. 35, 609 (1969).
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